Unit 1 **Problem Solving** In Electrostatics In the figure, two positive charges q_1 and q_3 fixed along the y-axis, exert a net electric force in the (+ve)x-direction on a charge q_1 fixed along the x axis. If a positive charge Q is added at (x, 0), the force on q_1 - (a) shall increase along the positive x-axis. - (b) shall decrease along the positive *x*-axis. - (c) shall point along the negative x-axis. - (d) shall increase but the direction changes because of the intersection of Q with q_2 and q_3 . #### How to understand this problem? - Draw the fig your self - Mark the charges q_2 and q_3 - Both are positive so mark + - Mark location of charge q₁ - Figure out the nature of force charge on q_1 , so that a net electrostatic force is towards + x direction #### Remember Properties of charges - Like charges repel and unlike charges attract - Electrostatic forces can only be added vectorially ## Draw lines to join q_2 and q_3 to q_1 ## Draw lines to join q_2 and q_3 to q_1 # If a positive charge Q is added at (x, 0), the force on q_1 If a positive charge Q is added at (x, 0), the force on q_1 shall increase along the positive x-axis The positive charge at Q attracts the negative charge at q_1 Hence increasing the force on q_1 in the positive x direction How would the situation change if the net force due to q_2 and q_3 was in the negative x direction? How would the situation change if the location of q_2 and q_3 was not symmetrical about the x axis? Think of different conditions for q_2 and q_3 and figure out the direction of net force with the addition of Q in the field of the three charges